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The generation of internal waves by vibrating
elliptic cylinders. Part 1. Inviscid solution
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(Received 4 January 1996 and in revised form 16 June 1997)

We consider the internal gravity waves that are produced in an inviscid Boussinesq
fluid, whose Brunt–Va$ isa$ la$ frequency N is constant, by the small rectilinear vibrations
of a horizontal elliptic cylinder whose major axis is inclined at an arbitrary angle to the
horizontal. When the angular frequency ω is greater than N, no waves are produced
and the governing elliptic equation is solved using conformal transformations.
Analytic continuation in ω to values less than N, when waves are produced, is then used
to determine the solution. It exhibits the surprising feature that, apart from certain
phase differences, the form of the velocity distributions in each of the beams of waves
that occur is the same for all values of the thickness ratio of the ellipse, the inclination
of its major axis to the horizontal and the plane in which the vibrations are occurring.
The Fourier decomposition of the velocity distribution is found and is used in a sequel,
Part 2, to investigate the effects of viscous dissipation.

In an important paper Makarov et al. (1990) have given an approximate solution for
a vibrating circular cylinder in a viscous fluid. We show that the limit of this solution
as the viscosity tends to zero is not the exact inviscid solution discussed herein. Further
comparison of their work and ours will be made in Part 2.

1. Introduction

There appear to be few solutions to the problem of calculating the internal gravity
waves that are generated by a vibrating body in a stably stratified fluid, in spite of its
relevance to both oceanography and atmospheric physics. When the fluid is assumed
to be inviscid and the Boussinesq approximation is made, solutions have been obtained
for the sphere (Hendershott 1969; Appleby & Crighton 1987), the flat plate (Hurley
1969), and the circular cylinder (Appleby & Crighton 1986) who also considered non-
Boussinesq effects. Also, Voisin (1991) gives solutions to a variety of three-dimensional
problems and also a comprehensive bibliography.

Mention should also be made of the important work of Robinson (1969, 1970). He
considered the inviscid problem of an internal wave in a horizontal channel incident on
a vertical barrier ; he determined the solution that satisfies the radiation condition and
introduced the ‘vortex function’ of which good use will be made in Part 2 (Hurley &
Keady 1997). Robinson’s success was dependent on crucial advice from the late
Professor J. J. Mahony referred to on p. 5 of Robinson (1970) and described in
greater detail in Fowkes & Silberstein (1995, p. 277).

For a viscous fluid the pioneering work of Mowbray & Rarity (1967) was followed
by that of Thomas & Stevenson (1972) who described a similarity solution that holds
at large distances from the body. Lighthill (1978) gives a comprehensive account of the
various types of waves that occur in fluids and pays particular attention to internal
gravity ones. Numerous theoretical and experimental contributions have also been
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made by Russian workers. Particular mention should be made of the paper by
Makarov, Neklyudov & Chasheckin (1990), which reviews this work and in particular
describes theoretical and experimental work on a vibrating circular cylinder.

More recent papers on the linear theory are referenced in Kistovich & Chasheckin
(1995), and in Kistovich, Neklyudov & Chasheckin (1990) nonlinear effects are studied.

The present investigation consists of two parts. In Part 1, the present paper, we
investigate the waves that are produced in an inviscid Boussinesq fluid whose
Brunt–Va$ isa$ la$ frequency N is constant. The waves are produced by the small
rectilinear vibrations at angular frequency ω of a horizontal elliptic cylinder whose
major axis is inclined at an arbitrary angle to the horizontal. We follow the approach
described in Hurley (1972) by first considering the case ω"N and then use analytic
continuation in ω to find the solution when ω!N.

The problem for ω"N is considered in §2. A simple (non-conformal) affine
transformation reduces the governing differential equation for the stream function to
Laplace’s equation and the given ellipse is transformed into a strained one. The
solution is then obtained by conformally mapping the strained ellipse onto a circle. In
§3 the analytic continuation in ω to values less than N is carried out to obtain the
solution in that case. In the special cases of a flat plate and a circular cylinder the
solutions agree with those previously published. In the final section, §4, our results are
compared with those of other investigators.

The solution obtained herein has two features that limit its applicability to a real
fluid of small viscosity. First, the fluid velocities have inverse-square-root singularities
at all points of the characteristics that touch the ellipse so that the kinetic energy per
unit length of characteristic is infinite. Also the velocities do not decay with increasing
distance from the ellipse.

Part 2 (Hurley & Keady 1997) describes an attempt to overcome these deficiencies.
The Fourier decomposition of the stream function found in Part 1 is modified by
including in the integrands factors to account for viscous dissipation. These factors
tend to unity as the viscosity tends to zero so that the exact inviscid solution is obtained
in this limit.

2. Solution for ω"N

Consider the two-dimensional motions produced in an inviscid stably stratified fluid
of constant Brunt–Va$ isa$ la$ frequency N by the small rectilinear vibrations of a rigid
elliptic cylinder. The elliptic cylinder has semi-axes of lengths a and b, the a semi-axis
being inclined at an angle θ to the horizontal. We introduce Cartesian axes Oxy, Ox
being horizontal and Oy vertically up. We suppose that the velocity of each point of
the surface of the cylinder is (U,V ) exp(®iωt) where t is the time and the angular
frequency w"N. The notation is shown in figure 1.

The equation of the ellipse, relative to the principal axes Ox
!
y
!
, is

x#

!

a#

­
y#

!

b#

¯ 1, (2.1)

where
x
!
¯x cos θ­y sin θ, y

!
¯®x sin θ­y cos θ, (2.2)

so that, relative to the Oxy axes, its equation is

x# 0cos# θ

a#

­
sin# θ

b#
1­y# 0sin# θ

a#

­
cos# θ

b#
1­2xy sin θ cos θ 0 1

a#

®
1

b#
1¯ 1. (2.3)
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h

F 1. Notation.

The resulting fluid motions may be described in terms of the stream function
ψ(x, y) exp(®iωt) such that

u¯®
¥ψ
¥y

exp(®iωt), �¯
¥ψ
¥x

exp(®iωt), (2.4)

and

α#
¥#ψ
¥x#

­
¥#ψ
¥y#

¯ 0, (2.5)

where
α#¯ 1®N #}ω#. (2.6)

In addition u and � must decay (as much as possible) at large distances from the
ellipse and ψ must satisfy the boundary condition

ψ¯Vx®Uy (2.7)

on the ellipse given by (2.3). Under the transformation

x
"
¯x}α, y

"
¯ y, (2.8)

equation (2.5) becomes Laplace’s equation,

¥#ψ
¥x#

"

­
¥#ψ
¥y#

"

¯ 0 (2.9)

and the ellipse given by (2.3) transforms to another ellipse whose equation in the z
"
¯

x
"
­iy

"
plane is

a
""

x#

"
­a

##
y#

"
­2a

"#
x
"
y
"
¯ 1, (2.10)

where

a
""

¯α# 0cos# θ

a#

­
sin# θ

b#
1 , a

##
¯

sin# θ

a#

­
cos# θ

b#

, a
"#

¯α sin θ cos θ 0 1

a#

®
1

b#
1 . (2.11)

Also the boundary condition (2.7) becomes

ψ¯αVx
"
®Uy

"
(2.12)

on the ellipse given by (2.10).
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The lengths a
"
and b

"
of the semi-axes of the ellipse (2.10) and the inclination θ

"
of

the a
"
semi-axis to Ox

"
may be found by the method of Jeffreys & Jeffreys (1956). We

find that, in terms of the quantities defined by (2.11),

a#

"
¯

a
""

­a
##

­∆"/#

2(a
""

a
##

®a#

"#
)
, b#

"
¯

a
""

­a
##

®∆"/#

2(a
""

a
##

®a#

"#
)
,

θ
"
¯ arctan 0a##

®a
""

®∆"/#

2a
"#

1 ,

5

6

7

8

(2.13)

where
∆¯ (a

""
­a

##
)#®4(a

""
a
##

®a#

"#
). (2.14)

Under the transformation
z
#
¯ z

"
exp(®iθ

"
), (2.15)

the ellipse in the z
"
-plane is rotated through an angle ®θ

"
to make its axes coincide

with Ox
#

and Oy
#
. We now apply the Joukowski transformation

z
#
¯ z

$
­

a#

"
®b#

"

4z
$

(2.16)

which maps the region outside the ellipse in the z
#
-plane onto the region outside the

circle in the z
$
-plane of radius

a
$
¯ "

#
(a

"
­b

"
). (2.17)

The inverse of the transformation (2.16) is

z
$
¯ "

#
²z

#
­[z#

#
®(a#

"
®b#

"
)]"/#´. (2.18)

where [z#
#
®(a#

"
®b#

"
)]"/# behaves as z

#
as rz

#
rU¢. Hence the most general form for ψ

that represents motions in which the fluid velocities decay at large distances is

ψ¯k
!
log z

$
­3

¢

n="

k
n
z−n

$
­ka

!
log za

$
­3

¢

n="

ka
n
za −n

$
, (2.19)

where the overbar denotes the complex conjugate.
It remains for us to determine the coefficients k

n
so that ψ given by (2.19) satisfies

the boundary condition (2.12).
On the circle in the z

$
-plane, we take

z
$
¯ "

#
(a

"
­b

"
) exp(i} ) (2.20)

and (2.15) and (2.16) give

x
"
¯ a

"
cos } cos θ

"
®b

"
sin } sin θ

"
, y

"
¯ a

"
cos } sin θ

"
­b

"
sin } cos θ

"
. (2.21)

Substitution into the boundary condition (2.12) and equating coefficients of sin } and
cos } shows that it is satisfied provided

k
n
¯ 0, n1 1,

and
k
"
¯ "

%
(a

"
­b

"
) ²αVa

"
cos θ

"
®Ua

"
sin θ

"
®i(αVb

"
sin θ

"
­Ub

"
cos θ

"
)´. (2.22)

Hence the desired solution is

ψ¯
k
"

z
$

­
ka
"

za
$

, (2.23)

where z
$

is given by (2.18) and k
"

by (2.22).
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3. Solution for ω!N

When ω!N the governing equation for ψ is

¥#ψ
¥y#

®η#
¥#ψ
¥x#

¯ 0, (3.1)

where
η#¯N #}ω#®1. (3.2)

We introduce the coordinates

σ
+
¯x sinµ®y cosµ, σ

−
¯x sinµ­y cosµ, (3.3)

where
η¯ cotµ. (3.4)

In terms of them, (3.1) becomes

¥#ψ
¥σ

+
¥σ

−

¯ 0 (3.5)

whose general solution is
ψ¯ψ

+
(σ

+
)­ψ

−
(σ

−
). (3.6)

Our approach is to use analytic continuation in ω to find the functions ψ
+
(σ

+
) and

ψ
−
(σ

−
) from the solution for ω"N given by (2.22) and (2.23). This solution for ψ is

of the form
ψ¯ψ(a, b, θ,U,V,α) (3.7)

and the only dependence on ω is through α which is defined by (2.6). Under the analytic
continuation it becomes iη, where η is defined by (3.2), so that the solution for ω!N
is

ψ
c
¯ψ(a, b, θ,U,V, iη), (3.8)

where we have introduced the notation that subscript c denotes the outcome of the
analytic continuation.

First, we determine (z
$
)
c
where z

$
is defined by (2.18). Referring to (2.13) we have

(a#

"
)
c
¯

(a
""

­a
##

)
c
­(∆"/#)

c

2(a
""

a
##

®a#

"#
)
c

, (b#

"
)
c
¯

(a
""

­a
##

)
c
®(∆"/#)

c

2(a
""

a
##

®a#

"#
)
c

. (3.9)

Then (2.11) readily show that

(a
""

­a
##

)
c
¯

a# sin(µ®θ) sin(µ­θ)®b# cos(µ®θ) cos(µ­θ)

a#b# sin#µ
, (3.10)

(a
""

a
##

®a#

"#
)
c
¯®

cos#µ

a#b# sin#µ
, (3.11)

and

∆
c
¯

1

a%b% sin%µ (a% sin#(µ®θ) sin#(µ­θ)­b% cos#(µ®θ) cos#(µ­θ)

­"

#
a#b# sin# 2µ­sin# 2θ)´. (3.12)

We now simplify (3.12) by using the important identity

a% sin#(µ®θ) sin#(µ­θ)­b% cos#(µ®θ) cos#(µ­θ)­"

#
a#b# (sin# 2µ­sin# 2θ)¯ c#

+
c#
−
,

(3.13)
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(U, V ) exp (–ixt)

a

O

b h

r–=c–

r+=c+

r+= –c+

r+
ˆ

l

l

r–= –c–

r–ˆ

F 2. Notation.

where
c#
+
¯ a# sin#(µ®θ)­b# cos#(µ®θ),

c#
−
¯ a# sin#(µ­θ)­b# cos#(µ­θ).* (3.14)

Equations (3.12) and (3.13) now give

(∆"/#)
c
¯

c
+
c
−

a#b# sin#µ
. (3.15)

It can be shown using analytic geometry (see, for example, Sommerville 1937) that
the straight lines σ

+
¯³c

+
and σ

−
¯³c

−
, with c

+
and c

−
given by (3.14), are tangential

to the ellipse as shown in figure 2.
Equations (3.9), (3.11) and (3.15) now give

(a#

"
®b#

"
)
c
¯®c

+
c
−
}cos#µ (3.16)

and
[(a#

"
®b#

"
)"/#]

c
¯³ic"/#

+
c"/#
−

}cosµ . (3.17)

For the special case θ¯ 0, b¯ 0, equation (2.8) gives a
"
¯ a}α, so that (a

"
)
c
¯

®ia sinµ}cosµ and we conclude that the minus sign in (3.17) is to be taken so that

[(a#

"
®b#

"
)"/#]

c
¯®ic"/#

+
c"/#
−

}cosµ. (3.18)

To determine (θ
"
)
c
where θ

"
is defined by (2.13) we use the result

arctan z¯ "

#
i log

1®iz

1­iz
(3.19)

and find that
(exp iθ

"
)
c
¯ (c

+
}c

−
)"/#, (exp®iθ

"
)
c
¯ (c

−
}c

+
)"/# (3.20)

so that
(cos θ

"
)
c
¯ "

#
²(c

+
}c

−
)"/#­(c

−
}c

+
)"/#´

and
(sin θ

"
)
c
¯ "

#
i²(c

+
}c

−
)"/#®(c

−
}c

+
)"/#´. (3.21)
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(b)

r–=c–

r–= –c–

– iP

–P

P

(a)

r+=c+

r+= –c+

–P

P

– iP

iP

iP

F 3. (a) Values of (σ#
+
}c#

+
®1)"/# outside the ellipse where P denotes the positive real number

rσ#
+
}c#

+
®1r"/#. (b) Values of (σ#

−
}c#

−
®1)"/# outside the ellipse where P denotes the positive real number

rσ#
−
}c#

−
®1r"/#.

Using results above, we now find that

(z
$
)
c
¯

®ic"/#
+

c"/#
−

2 cosµ (σ+

c
+

­9σ#
+

c#
+

®1:"/#* (3.22)

where [σ#
+
}c#

+
®1]"/# behaves as σ

+
}c

+
as σ

+
U­¢. To determine the values of

[σ#
+
}c#

+
®1]"/# in the various regions of the Oxy plane we use the procedure described

in Hurley (1972). If ω in (3.2) is replaced by ω­iε we find that both the real and
imaginary parts of ψ satisfy an elliptic equation. Its solution ψ(x, y ;ω­iε) will
therefore be analytic in x and y and analytic continuation in x and y may be used to
determine the values of the square root in the various regions of the Oxy-plane. Taking
the limit εU 0 gives the values shown in figure 3.

To calculate (za
$
)
c
we note that (2.15) and (3.20) give

(za
#
)
c
¯®

iσ
−

cosµ 0
c
+

c
−

1"/#. (3.23)

Equations (2.19) and (3.19) then give

(za
$
)
c
¯

®ic"/#
+

c"/#
−

2 cosµ (σ−

c
−

­9σ#
−

c#
−

®1:"/#* , (3.24)

and the values of [σ#
−
}c#

−
®1]"/# are included in figure 3.
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The calculations of (k
"
)
c
and (ka

"
)
c
where k

"
is given by (2.22) are straight-forward,

and, combining the results with those of (3.22) and (3.24), we find that

ψ¯
c
+
α
+

σ
+
}c

+
­(σ#

+
}c#

+
®1)"/#

­
c
−
α
−

σ
−
}c

−
­(σ#

−
}c#

−
®1)"/#

, ω!N, (3.25)

where

α
+
¯

1

2c#
+

(a#(V cos θ®U sin θ) sin(µ®θ)­b#(V sin θ­U cos θ) cos(µ®θ)

­iab(V cosµ®U sinµ)* (3.26)
and

α
−
¯

1

2c#
−

(a#(V cos θ®U sin θ) sin(µ­θ)®b#(V sin θ­U cos θ) cos(µ­θ)

­iab(V cosµ­U sinµ)* . (3.27)

As an overall check on the algebra it is verified in the Appendix that the solution given
by equations (3.25)–(3.27) does satisfy the boundary condition (2.7).

The fluid velocities, VN , given by (3.25), can be expressed in the form

VN ¯ ( ¥ψ
¥σ

+

σ#
+
­

¥ψ
¥σ

−

σ#
−* exp(®iωt) (3.28)

where σ#
+

and σ#
−

are unit vectors in the directions shown in figure 2. Equation (3.25)
gives

¥ψ
¥σ

+

¯α
+ (1®

σ
+
}c

+

(σ#
+
}c#

+
®1)"/#* and

¥ψ
¥σ

−

¯α
− (1®

σ
−
}c

−

(σ#
−
}c#

−
®1)"/#* , (3.29)

the values of the square roots being given in figure 3. Hence, for example, the values
of ¥ψ}¥σ

+
for the beam of waves that lies in the first quadrant are

¥ψ
¥σ

+

¯

1

2

3

4

α
+ (1®

σ
+
}c

+

(σ#
+
}c#

+
®1)"/#* ,

σ
+

c
+

" 1,

α
+ (1­i

σ
+
}c

+

(1®σ#
+
}c#

+
)"/#* , ®1!

σ
+

c
+

! 1,

α
+ (1­

σ
+
}c

+

(σ#
+
}c#

+
®1)"/#* ,

σ
+

c
+

!®1.

(3.30)

Values of the velocity distribution function (1}α
+
) (¥ψ}¥σ

+
), which is the same for all

values of a, b, θ, U and V, are shown in figure 4.
Using results given in Erde! lyi et al. (1954) we find that, for waves in the first

quadrant,

ψ
+
¯®iα

+
c
+&

¢

!

J
"
(K )

K
exp0iKσ

+

c
+

1dK, (3.31)

and

¥ψ
¥σ

+

¯α
+&

¢

!

J
"
(K ) exp0iKσ

+

c
+

1dK, (3.32)
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3

2

1

0

–1

–2

–3

21 3

F 4. The velocity distribution function (1}α
+
) (¥ψ}¥σ

+
) (see (3.30)) :

——, real part ; –––––, imaginary part.

where J
"
(K ) is a Bessel function of the first kind. This result confirms that the radiation

condition is satisfied.
For waves in the third quadrant, figure 1 of Hurley (1969) shows that only negative

values of K satisfy the radiation condition, so that

ψ
+
¯yiα

+
c
+&

¢

!

J
"
(K )

K
exp0³iK

σ
+

c
+

1dK, for waves in the
1st

3rd
quadrant resp.

(3.33)
The corresponding results for ψ

−
are

ψ
−
¯³iα

−
c
−&

¢

!

J
"
(K )

K
exp0yiK

σ
−

c
−

1dK, for waves in the
2nd

4th
quadrant resp.

(3.34)
Useful alternative expressions for ψ

+
are, using figures 3 and 5,

ψ
+
¯

1

2

3

4

c
+
α
+ 9σ+

c
+

­0σ#
+

c#
+

®11"/#: , s
+
¯ 0­ and 0®,σ

+
!®c

+
,

c
+
α
+ 9σ+

c
+

®0σ#
+

c#
+

®11"/#: , s
+
¯ 0­ and 0®,σ

+
" c

+
,

c
+
α
+ 9σ+

c
+

yi 01®
σ#
+

c#
+

1"/#: , s
+
¯ 0³, ®c

+
!σ

+
! c

+
.

(3.36)

(3.35)

(3.37)
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O

r+

r+
ˆ

l

l

s+

y

x

s+
ˆ

r–
r–ˆ

y

s–

s–ˆ

O

l

l

x

F 5. Notation.

(The square roots in equations (3.35)–(3.37) denote positive quantities.)
Using results given in Hurley (1969), it may readily be shown that the pressure, p,

corresponding to the solution (3.25) is

p¯ iρ
!
ωη (c+α

+ 9σ+

c
+

®0σ#
+

c#
+

®11"/#:®c
−
α
− 9σ−

c
−

®0σ#
−

c#
−

®11"/#:* . (3.38)

It follows that the time average of the power radiated in the beam in the first
quadrant, P, is

P¯
1

4&
c+

−c+

0p ¥ψ-

¥σ
+

­pa
¥ψ
¥σ

+

1dσ
+

¯ "

#
πηρ

!
ωc#

+
α
+
α-
+
. (3.39)

Equation (3.38) may also be used to calculate the force per unit length, Z, exerted
by the fluid on the cylinder. We find that

Z¯πρ
!
ωη²s#

+
[iabα

+
®(a#®b#) sin(µ®θ) cos(µ®θ)α

+
]®c#

+
α
+
σ#
+

­s#
−
[®iabα

−
®(a#®b#) sin(µ­θ) cos(µ­θ)α

−
]®c#

−
α
−
σ#
−
´, (3.40)

where s#
+
, σ#

+
, s#

−
and σ#

−
are unit vectors in the directions shown in figure 5.
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When b¯ 0 the ellipse becomes a flat plate of length 2a and (3.25) gives

ψ¯
aU

n

2 ( σ
+

α sin(µ®θ)
®0 σ#

+

a# sin#(µ®θ)
®11"/#­ σ

−

a sin(µ­θ)

®0 σ#
−

a# sin#(µ­θ)
®11"/#* , (3.41)

where U
n

is the normal velocity of the plate. This result agrees with that of Hurley
(1969).

When a¯ b the ellipse becomes a circle and we find that

ψ¯
a

2 (V sinµ­U cosµ­i(V cosµ®U sinµ)* (σ+

a
®0σ#

+

a#

®11"/#*
­

a

2 (V sinµ®U cosµ­i(V cosµ­U sinµ)* (σ−

a
®0σ#

−

a#

®11"/#* , (3.42)

which agrees with results given in Appleby & Crighton (1986). Also, in this case (3.40)
gives

Z¯ (F
x
,F

y
)¯ (®πρ

!
ωa#ηU,πρ

!
ωa#ηV ), (3.43)

a result that we will use in Part 2.

4. Discussion

The solution we have derived for the internal waves that are generated by a vibrating
elliptic cylinder in an inviscid Boussinesq fluid exhibits the surprising feature that the
velocity distribution function given by (3.30) is the same for all values of the thickness
ratio of the ellipse, the inclination of its major axis to the horizontal and the plane in
which the vibrations are occurring.

The wave forms, Re((¥ψ}¥σ
+
) exp(®iωt)), at successive instants of time are given in

figure 6 for a circular cylinder executing horizontal oscillations. (We take a¯ 1, µ¯
π}4, V¯ 0, U¯ 1.) They exhibit an extreme ‘bimodal ’ form (Makarov et al. 1990), in
that the envelope of the curves has twin maxima.

4.1. Comparison of our results with those of Makaro� et al. (1990 )

We focus on results for the circular cylinder.
Our solution is expressed in the form of (3.6), with ψ

+
(σ

+
) and ψ

−
(σ

−
) therein given

by (3.42). For a point x¯ a cosφ, y¯ b sinφ on the surface of the cylinder, (3.42) gives

ψ
+
¯ "

#
a(V cosφ®U sinφ®i(U cosφ­V sinφ), (4.1)

ψ
−
¯ "

#
a(V cosφ®U sinφ­i(U cosφ­V sinφ). (4.2)

We note that neither ψ
+

nor ψ
−

satisfy the boundary condition (2.7) but that their sum
does.

Model 4 of Makarov et al. (1990) concerns approximating the solution for a
vibrating circular cylinder in a viscous fluid by representing it as a distribution of
dipoles on its surface. To compare it with our inviscid one we take the limit of their
solution as the kinematic viscosity ν tends to zero. Their expression for the vertical
displacement of the fluid particles is then, in our notation,

h¯®"

#
exp(®iωt) a

!
sinµ sin(µ®φ

!
)&

¢

!

J
"
(K ) exp0iKσ

+

a 1dK, (4.3)
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F 6. Wave forms Re((¥ψ}¥σ
+
) exp(®iωt)) at successive instants of time for a cylinder executing

horizontal oscillations. (Calculated from (3.42) with V¯ 0.) A label j at a curve indicates a phase
jπ}4.

where a
!

is the amplitude of the particle displacement and φ
!

is its inclination to the
horizontal. The particle displacement hσ

+

in the direction of σ#
+

(defined in figure 5) is
h}sinµ and differentiation with respect to t gives that the particle velocity in the
direction of σ#

+
is

¥ψM
+

¥σ
+

¯®
i

2
exp(®iωt) a

!
ω sin(µ®φ

!
)&

¢

!

J
"
(K ) exp0iKσ

+

a 1dK, (4.4)

where the superscript M denotes Makarov et al. (1990). Also, in (4.4), t is measured
from t

!
¯®π}ω to change the sign preceding its right-hand side. Now

a
!
ω sin (µ®φ

!
)¯ a

!
ω(sinµ cosφ

!
®cosµ sinφ

!
)

¯U sinµ®V cosµ. (4.5)
This yields

¥ψM
+

¥σ
+

¯®
i

2
exp(®iωt) (U sinµ®V cosµ)&

¢

!

J
"
(K ) exp0iKσ

+

a 1dK. (4.6)

The corresponding result in our solution with the time factor exp(®iωt) added is, by
(3.42),

¥ψ
+

¥σ
+

¯®
i

2
exp(®iωt) (U sinµ®V cosµ­i(U cosµ­V sinµ))&

¢

!

J
"
(K ) exp0iKσ

+

a 1dK.

(4.7)

Equations (4.6) and (4.7) show that there is a significant difference between our
solution and that of Makarov et al. (1990). Further, for a point x¯ a cosφ, y¯
b sinφ on the surface of the cylinder, (4.6) gives

ψM
+

¯ "

#
a(V cosφ®U sinφ). (4.8)

Comparison of this last equation and (4.1) shows that ψM
+

does not take the
appropriate values on the surface of the cylinder.

The discrepancies arise because putting ν¯ 0 in the solution of Makarov et al. (1990)
does not give the inviscid solution discussed herein. Further comparisons of their work
and ours will be made in Part 2.
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Appendix. Verification of boundary condition

The equation of the ellipse given by (2.1) can be written

x
!
¯ a cosφ

"
, y

!
¯ b sinφ

"
, 0!φ

"
! 2π. (A 1)

Equations (A 1), (2.2), (2.3) and figure 3 shows that, if 0! θ!µ, then, on the ellipse,

σ
+
¯ a cosφ

"
sin(µ®θ)®b sinφ

"
cos(µ®θ),

σ
−
¯ a cosφ

"
sin(µ­θ)­b sinφ

"
cos(µ­θ),

(σ#
+
}c#

+
®1)"/#¯ (i}c

+
) (a sin(µ®θ) sinφ

"
­b cos(µ®θ) cosφ

"
),

(σ#
−
}c#

−
®1)"/#¯®(i}c

−
) (a sin(µ­θ) sinφ

"
®b cos(µ­θ) cosφ

"
).

These equations, with (2.2), (2.7), (3.25) and (A 1), then show that the boundary
condition is satisfied provided, for 0!φ

"
! 2π,

a cosφ
"
(V cos θ®U sin θ)®b sinφ

"
(V sin θ­U cos θ)3α

+
C

+
­α

−
C

−
, (A 2)

where

C
+
¯ (a cosφ

"
sin(µ®θ)®b sinφ

"
cos(µ®θ)®i(a sinφ

"
sin(µ®θ)­b cosφ

"
cos(µ®θ))),

C
−
¯ (a cosφ

"
sin(µ­θ)­b sinφ

"
cos(µ­θ)­i(a sinφ

"
sin(µ­θ)®b cosφ

"
cos(µ­θ))).

Equating the coefficients of sinφ
"

and cosφ
"

in (A 2) leads to equations whose
solution for α

+
and α

−
is given by (3.26) and (3.27).
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